EPITHERMAL GOLD-SILVER
and
PORPHYRY COPPER-GOLD
EXPLORATION
- Short Course Manual

Greg Corbett
Incomplete DRAFT as at February 2018
www.corbettgeology.com
SUMMARY

This short course manual considers field aspects of epithermal and porphyry ore deposits as an aid to mineral exploration. The classification of ore systems used here allows ore and gangue mineralogy, hydrothermal alteration, structure, breccias and the paragenetic sequence of events, to be employed as exploration tools to identify hidden ore systems. Zoned hydrothermal alteration provides vectors to mineralisation and must be understood in order to correctly interpret geophysical data derived from: sulphide content (chargeability), silification (resistivity) and magnetism, which is both created and destroyed. “Lithocaps” are divided into individual elements which vector to different deposit types. Major structures localise ore systems within second order dilatant fractures, and analyses of vein kinematics provide an indication of the tectonic conditions active during ore formation. A model is proposed that transient changes in the nature of convergence provide triggers for the emplacement of intrusions along with vein and breccia ores derived from deeper magmatic source rocks. Breccias which occur in most epithermal-porphyry deposits are considered using different classification methods for inclusion within geological models and as vectors to mineralisation.

Porphyry and most epithermal deposits are hosted within magmatic arcs related to compressional subduction settings, while only some epithermal deposit styles dominate in extensional back arc basins and intra-arc rifts. The late Terry Leach pointed out the importance of the Philippine arc geothermal systems as analogies to a wider variety of ore deposit and alteration types than the extensional New Zealand geothermal systems, and developed fluid mixing models to account for bonanza Au formation in low sulphidation epithermal Au deposits.

Two types of epithermal Au-Ag mineralisation, developed at shallow crustal levels, termed low and high sulphidation, are derived from dramatically different ore fluids to produce distinctive wall rock alteration as well as ore and gangue mineralogy. Low sulphidation epithermal Au-Ag deposits display two fluid flow trends and zoned deposit types, within either arcs or strongly extensional settings. The arc deposits tend to be sulphide-rich with a progression in styles, in time and from deep to shallower crustal levels, as quartz-sulphide Au ± Cu, to carbonate-base metal Au, and then epithermal quartz Au mineralisation at highest crustal levels, which may host bonanza Au grades. Banded epithermal Au-Ag veins which typically form in extensional back arcs may grade from deeper level polymetallic Ag-Au, as a Ag-rich end member of carbonate-base metal Au style, to chalcedony-ginguro Au-Ag mineralisation at higher crustal levels, with the inclusion of substantial quartz gangue deposited from circulating meteoric waters. High sulphidation epithermal Au deposits develop within arcs and feature characteristic zoned hydrothermal alteration derived from the reaction of hot acidic fluids with wall rocks, commonly overprinted by later Au ± Ag ± Cu sulphide mineralisation. Higher Au grades and better metallurgy are recognised where ore fluids evolve to lower sulphidation. The term carbonate-base metal Au is more correct for much of the mineralisation described in geological literature as intermediate sulphidation.

Ore shoots defined as wider and higher metal grade vein portions, which host the best ore in epithermal deposits, develop by the coincidence of several controls to mineralisation defined as: different styles of epithermal Au mineralisation (above), appropriate lithologies, dilatant fractures and efficient mechanisms of Au deposition.

Porphyry Cu-Au deposits develop within arcs as quartz-sulphide stockwork to sheeted veins and breccias hosted within polyphasal, commonly spine-like, porphyritic intrusions rising to within 1-2 km of the palaeo surface above deeper magmatic source bodies. The staged model for porphyry development helps to explain the overprinting relationships of zoned prograde and later retrograde hydrothermal alteration within intrusions and adjacent wall rocks, combined with overprinting near porphyry vein and breccia styles. Many of these features provide vectors towards blind exploration targets. Skarns, developed by the alteration of reactive rocks, represent both ore systems and vectors to buried porphyry source rocks. These are zoned in time and space from isochemical, to prograde and retrograde metasomatic skarns and later stage epithermal Au overprints.

The exploration implications of the geological models presented herein include the ability to target blind ore systems from an understanding of features expected to occur above or adjacent to mineralisation. Although geological models presented herein have been tested by application to many ore systems, in the exploration environment new data will prompt continued modification.
ACKNOWLEDGEMENTS

Too many colleagues to name here have assisted with geological discussions, including site visits, during the evolution of short course materials and also provided the encouragement to prepare this manual. Similarly clients have offered or agreed to the use of the author's consulting work and other data herein. Terry Leach stressed the need to let the rocks speak for themselves and his contributions remain pivotal in the development of the geological models upon which this study is based. This short course and manual have only been made possible by the tireless efforts of Denese Oates who proofread text, drafted figures and assisted with the assembly of this manual. The University of New South Wales is also thanked for provision of access to a geological library.

Citation
CONTENTS

1 Introduction
1.1 Setting of epithermal-porphyry ore deposits
1.2 Classification of magmatic arc ore systems
1.2.1 Evolution of terminology
 1.2.1.1 Two low sulphidation epithermal groups
 1.2.1.2 Porphyry Cu
1.2.2 This terminology
 1.2.2.1 Low sulphidation epithermal fluids
 1.2.2.2 Styles of low sulphidation epithermal
 1.2.2.2.1 Quartz-sulphide Au + Cu
 1.2.2.2.2 Carbonate-base metal Au and polymetallic Ag-Au
 1.2.2.2.3 Epithermal quartz Au
 1.2.2.2.4 Chalcedony-tinguro Au-Ag
 1.2.2.2.5 Sediment hosted replacement Au
 1.2.2.3 High sulphidation epithermal
 1.2.2.4 Does intermediate sulphidation exist?
 1.2.2.5 Porphyry Cu
1.2.2.6 Skarn
1.2.2.7 Linkages between deposit types
1.3. Conclusions and exploration implications

2 Hydrothermal alteration
2.1 Alteration minerals
2.1.1 Calc-silicate group minerals
2.1.2 Chlorite group minerals
2.1.3 Illite group minerals
2.1.4 Illite-kaolin group minerals
2.1.5 Kaolin group minerals
2.1.6 Alunite-kaolin group minerals
2.1.7 Silica group minerals
2.2 Alteration styles
2.2.1 Prograde porphyry alteration
 2.2.1.1 Potassic alteration
 2.2.1.2 Inner propylitic alteration
 2.2.1.3 Outer propylitic alteration
 2.2.1.4 Zoned potassic-propylitic alteration
 2.2.1.5 Epithermal propylitic (-potassic) alteration
 2.2.1.5.1 Ohakuri, New Zealand
 2.2.1.5.2 Ladolam, Lihir Is., Papua New Guinea
 2.2.1.5.3 Round Mountain, Nevada, USA
2.2.2 Retrograde porphyry alteration
2.2.2.1 Phyllic alteration
2.2.3 Argillic alteration
 2.2.3.1 Overprinting argillic upon phyllic alteration
 2.2.3.2 Argillic alteration subjacent to acid sulphate caps
 2.2.3.3 Argillic alteration marginal to low sulphidation epithermal veins
 2.2.3.1 Golden Cross Au-Ag mine, New Zealand
 2.2.3.2 Kupol Au-Ag mine Eastern Russia
 2.2.3.4 Argillic alteration adjacent to advanced argillic alteration
2.2.4 Advanced argillic alteration
2.2.4.1 Barren shoulders of advanced argillic alteration
 2.2.4.1.1 Formation of barren shoulders
 2.2.4.1.2 Examples
 2.2.4.1.2.1 Lookout Rocks, New Zealand
2.2.4.1.2.2 Frieda River, Papua New Guinea
2.2.4.1.2.3 Queen Elizabeth, Chile
2.2.4.1.2.4 Halilaga, Turkey
2.2.4.1.2.5 Bilimoia, Papua New Guinea
2.2.4.1.2.6 Nash's Hill, Australia
2.2.4.1.2.7 Vuda, Fiji
2.2.4.2 Collapsing advanced argillic alteration
 2.2.4.2.1 Ovoid textures
2.2.4.3 Acid D veins
2.2.4.4 Associated with high sulphidation epithermal Au-Ag deposits
2.2.4.5 Steam heated alteration
2.2.4.6 Acid sulphate alteration
 2.2.4.6.1 Hatchobaru
2.2.4.7 Magmatic solfataras
2.2.4.8 Supergene weathering
2.3 Conclusions and exploration implications

3 Structure
3.1 Major strictures
3.1.1 Arc-parallel structures
3.1.2 Arc-normal structures
3.1.3 Conjugate fractures
3.2 Dilatant settings
 3.2.1 Orthogonal extension
 3.2.1.1 Ladolam deposit, Lihir Island
3.2.1.1 Hanging wall splays
 3.2.1.1.1 Porgera Roamane fault and Zone VII
 3.2.1.1.2 Tolukuma, Papua New Guinea
 3.2.1.1.3 Cap Oeste, Argentina
3.2.1.2 Refraction
3.2.2 Oblique convergence
 3.2.2.1 Negative flower structures
 3.2.2.2 Fault jogs
 3.2.2.2.1 A modern analogy of a fault jog
 3.2.2.2.2 Fault jog, Thames district, New Zealand
 3.2.2.2.3 Link structure, Umuna lode, Misima Is., Papua New Guinea
 3.2.2.2.4 Link structure, Cracow, Australia
 3.2.2.2.5 Cross over, El Indio, Chile
 3.2.2.3 Pull-apart basins
 3.2.2.3.1 Kelian, Indonesia
 3.2.2.3.2 Ocampo, Mexico
 3.2.2.3.3 Lampung, Indonesia
3.2.2.4 Flexures
 3.2.2.4.1 Flexures, Viento veins El Indio, Chile
 3.2.2.4.2 Vera Nancy, NE Australia
3.2.2.5 Tension veins
 3.2.2.5.1 Waihi, New Zealand
3.2.2.5.2 Golden Cross, New Zealand
3.2.2.5.3 Exploration of tension veins
3.2.2.5.4 Tension veins and normal faults
3.2.2.6 Splay faults
3.2.2.6.1 Chuquicamata
 3.2.2.6.2 La Escondida
3.2.2.6.3 Frieda-Nena, Papua New Guinea
3.2.2.6.4 Philippine Fault
3.2.3 Orthogonal compression
3.2.3.1 Arc-normal veins
 3.2.3.1.1 El Guanaco, Chile
3.2.3.2 Conjugate fractures
 3.2.3.2.1 Deseado Massif
3.2.3.3 Restraining bends
 3.2.3.3.1 Talang Santo
3.2.3.4 Thrust-related mineralisation
 3.2.3.4.1 Kencana, Gosowong, Indonesia
 3.2.3.4.2 Morobe goldfield, Papua New Guinea
3.2.4 Ore shoot orientation
 3.2.4.1 Palmarejo Mexico
 3.2.4.2 Viento vein, El Indio district, Chile
3.2.5 Collapse and flat dipping structures
 3.2.5.1 Emperor gold mine, Fiji
3.2.5.2 Drake Volcanics
3.2.5.3 Ladolam, Lihir Is., Papua New Guinea
3.2.5.4 Bedding plane reactivation during compression
3.3 Structures associated with porphyry deposits
3.3.1 Some definitions
3.3.2 Porphyry vein formation
 3.3.2.1 Initial intrusion emplacement
 3.3.2.2 Cooling
 3.3.2.3 Failure of the over-pressurised carapace
 3.3.2.4 Cu-Au mineral deposition
3.3.3 Porphyry vein orientations
 3.3.3.1 Forceful upward intrusion emplacement
 3.3.3.1.1 Collapse
 3.3.3.2 Oblique convergence
 3.3.3.2.1 Browns Creek skarn
 3.3.3.3 Orthogonal extension
 3.3.3.3.1 Goonumbla district
 3.3.3.4 Orthogonal compression
 3.3.3.4.1 Cadia Valley
 3.3.3.4.2 Thrust fault control
3.4 Triggers for mineralisation
 3.4.1 Rapid depressurisation
 3.4.1.1 Sector collapse
 3.4.1.2 Thrust erosion
 3.4.1.3 Rapid uplift and erosion
 3.4.2 Transient changes in the nature of convergence
 3.4.2.1 Transient changes from orthogonal to oblique compression
 3.4.2.1.1 Lachlan Orogen, Eastern Australia
 3.4.2.1.2 Chile
 3.4.2.1.3 Deseado Massif, Argentine Patagonia
 3.4.2.2 Relaxation of convergence
 3.4.2.2.1 The Tethyan arc in Turkey
 3.4.2.2.2 Goonumbla, Australia
 3.4.2.2.3 La Arena, Peru
3.5 Conclusions and exploration implications

4 Breccias
4.1 Process of breccia analysis
4.2 Descriptive terminology
 4.2.1 Components
 4.2.2 Clast description
 4.2.3 Matrix
4.2.4 Organisation
4.2.5 External form
4.2.6 Conclusion
4.3 Colloquial terminology
4.4 Genetic terminology
4.4.1 Hydrothermal-magmatic breccias
4.4.2 Contact breccias
4.4.3 Intrusion breccias
4.4.4 Magmatic hydrothermal breccias
4.4.4.1 Hydrothermal-magmatic breccias
4.4.4.2 Contact breccias
4.4.4.3 Intrusion breccias
4.4.4.4 Magmatic hydrothermal breccias
4.4.4.4.1 A mechanism for breccia pipe formation
4.4.4.4.2 Pebble dykes
4.4.4.3 Wall rock hosted intrusion breccias
4.4.4.3.1 San Cristobal, Chile
4.4.4.3.2 East Breccia, Cananea porphyry Cu-Mo
4.4.4.4 Magmatic hydrothermal breccias pipes
4.4.4.4.1 Kidston Au mine, Australia
4.4.4.4.2 La Colorado pipe at the Cananea porphyry Cu-Mo district
4.4.4.4.3 Cargo, Australia
4.4.4.5 Decompression breccias
4.4.4.6 Collapse breccias
4.4.4.7 Shingle breccias
4.4.4.8 Tourmaline breccia pipes
4.4.4.8.1 Central Chile
4.4.4.9 Conclusion, magmatic hydrothermal breccias
4.4.5 Phreatomagmatic breccia
4.4.5.1 Diatreme breccia pipes
4.4.5.2 Collapse
4.4.5.3 Milled matrix breccias
4.4.5.4 Hydrothermal alteration
4.4.5.5 Gold mineralisation
4.4.5.6 Verification
4.4.5.7 Kelian, Indonesia
4.4.5.8 Bulolo Graben, Papua New Guinea
4.4.5.9 Cripple Creek
4.4.5.10 Gold Ridge gold deposit, Solomon Islands
4.4.5.11 Ladolam gold deposit, Papua New Guinea
4.4.5.12 Wafi, Papua New Guinea
4.4.5.13 San Cristobal, Bolivia
4.4.5.14 Conclusion
4.4.6 Phreatic or eruption breccias
4.4.6.1 Shallow eruption pipes
4.4.6.1.1 Waimangu, New Zealand
4.4.6.1.2 Champagne pool
4.4.6.1.3 Osorezan, Japan
4.4.6.1.4 White Island, New Zealand
4.4.6.2 Silicified eruption breccias
4.4.6.2.1 McLaughlin, California
4.4.6.2.2 Toka Tindung, Indonesia,
4.4.6.2.3 Twin Hills, Queensland Australia
4.4.6.2.4 Puhupuhi, Northland, New Zealand
4.4.6.3 Clay matrix eruption breccias
4.4.6.3.1 Favona, New Zealand
4.4.6.3.2 Broken Hills, New Zealand
4.4.6.3.3 Neavesville, New Zealand
4.4.6.4 Conclusion to hydrothermal magmatic-phreatic breccias
4.4.7 Tectonic-hydrothermal breccias
4.4.7.1 Crackel breccias
4.4.7.2 Fluidised breccia (dykes)
4.4.7.3 Fluidised crackle breccias
4.4.7.4 Jigsaw or mosaic breccias
4.4.7.5 Floating clast breccias
4.4.7.6 Vein-breccias
4.4.7.7 Clay matrix hydrothermal breccias
4.4.8 Dissolution breccias
4.4.9 Composite breccias
4.4.9.1 Phreatomagmatic-phreatic breccias
 4.4.9.1.1 Composite phreatomagmatic-phreatic, White Island
4.5 Conclusions and exploration implications
LIST OF FIGURES

1.1 Model for epithermal and porphyry mineralisation styles
1.2 Pacific rim plate boundaries, magmatic arcs and back arcs
1.3 Subduction zone, magmatic arc and back arc
1.4 Ore systems within magmatic arc and back arc settings
1.5 Magmatic arc and back arc geothermal systems
1.6 Distinction between high and low sulphidation ore fluids
1.7 Evolved hydrothermal fluids in magmatic arc and back arc settings
1.8 Two low sulphidation fluid flow trends
1.9 Magmatic arc low sulphidation Au
1.10 Two sulphidation epithermal bonanza Au grade end members
1.11 Extensional low sulphidation epithermal mineralisation
1.12 High sulphidation epithermal Au and zoned advance argillic alteration.
1.13 Transition to lower sulphidation at the El Indio district
1.14 Porphyry Cu-Au

2.1 Common alteration minerals in hydrothermal systems plotted as pH vs temperature
2.2 Temperature ranges for the formation of hydrothermal alteration minerals
2.3 Zoned potassic-propylitic alteration
2.4 Potassic alteration - K-feldspar
2.5 Potassic alteration - Secondary biotite, anhydrite, magnetite
2.6 Inner propylitic alteration
2.7 Outer propylitic alteration
2.8 Neutral chloride alteration - Ohakuri, New Zealand
2.9 Adularia flooding - Lihir, Papua New Guinea
2.10 Adularia flooding - Round Mountain, Nevada, USA
2.11 Illite overprint on adularia - Dvoynoye, Far Eastern Russia
2.12 Drawdown and the formation and collapse of retrograde hydrothermal alteration
2.13 Phyllic alteration collapses upon potassic-propylitic alteration
2.14 Some examples of silica-sericite-pyrite (phylllic) alteration
2.15 Styles of argillic alteration
2.16 Argillic alteration overprints phyllic alteration - Taguibo Philippines and others
2.17 Argillic alteration overprints propylitic and potassic
2.18 Argillic alteration developed by collapse of acid sulphate cap - Lihir Is., Papua Guinea
2.19 Argillic alteration selvages - Nolans, Jamgang, Indo & Ovacik
2.20 Illite-pyrite alteration within permeable host rocks – Cirianiu, Fiji
2.21 Illite alteration - Mastra, Turkey
2.22 Smectite alteration as a swelling clay – Kupol, Rusia and Mastra, Turkey
2.23 Zoned illite species zonation - Golden Cross, New Zealand
2.24 Zoned illite alteration - Kupol, Far Eastern Russia
2.25 Styles of advanced argillic alteration
2.26 Styles of advanced argillic and fluid flow paths on the pH vs temperature figure
2.27 Some examples of barren shoulders
2.28 Massive silica typical of silica ledges associated with barren shoulders
2.29 Substantial pyrite in barren shoulders
2.30 BARREN SHOULDER - LOOKOUT ROCKS, NEW ZEALAND
2.31 Barren shoulder - Debom, Frieda River, Papua New Guinea
2.32 Structurally-lithologically controlled barren shoulder - Queen Elizabeth, Northern Chile
2.33 Lithologically controlled barren shoulder - Halilaga, Turkey
2.34 Lithologically controlled barren shoulder - Las Aguadas, Chile
2.35 The structurally controlled barren shoulder - Vuda, Fiji
2.36 Collapsing advanced argillic alteration - zonation and fluid flow path.
2.37 Formation of advanced argillic mantos
2.38 Ovoid textures - Tantahuatay, Peru
2.39 Zoned alteration associated with high sulphidation epithermal Au-Ag deposits
2.40 Zoned advanced argillic alteration – Frieda River, Papua New Guinea
2.41 Zoned advanced argillic alteration – Wafi, Papua New Guinea
2.42 Zoned advanced argillic alteration deposits – La Coipa, Chile
2.43 Zoned advanced argillic alteration with depth
2.44 Steam heated alteration in high sulphidation epithermal environments
2.45 Steam heated alteration - Pascua-Lama region
2.46 Steam heated alteration - La Coipa region
2.47 Acid sulphate cap model
2.48 Acid sulphate cap alteration - Champagne Pool, New Zealand
2.49 Acid sulphate cap alteration - Arcata, Peru and San Cristobal, Bolivia
2.50 Acid sulphate cap alteration - Guadalupe, Palmarejo, Mexico and Sierra Moreno, Argentina
2.51 Acid sulphate cap alteration - Sleeper Nevada
2.52 Adjacent acid sulphate and barren shoulder - Hatchobaru geothermal field, Japan
2.53 Magmatic solfatara - White Island, New Zealand

3.1 Structures associated with subduction related magmatic arcs
3.2 Structural analysis of northern Chile
3.3 Major structures and ore systems in NSW on magnetics
3.4 Major structures and ore systems in Papua New Guinea
3.5 Conjugate fractures and ore systems - Argentine Patagonia
3.6 Conjugate fractures - Kidston region, Australia
3.7 Model for dilatant structures and ore shoot orientations
3.8 Listric faults - Arcata, Peru
3.9 Listric faults – Corani, Peru
3.10 Listric faults - Palmarejo, Mexico
3.11 Listric fault model – Ladolam, Lihir Island, Papua New Guinea
3.12 Hanging wall splay - Tolukuma, Papua New Guinea
3.13 Bonanza Au at a hanging wall splay intersection - Porgera, Papua New Guinea
3.14 Bonanza Au at a hanging wall splay intersection - Cap Oeste Deseado massif, Argentina
3.15 Refracted host structures and bonanza ore shoots
3.16 Ore settings in oblique structural environments
3.17 Negative flower structure
3.18 Fault jogs, small scale exposures, Spain
3.19 Fracture patterns associated with an earthquake at Dash-e Baraz, Iran 31 August 1968
3.20 Regional fault jog - Thames, New Zealand
3.21 Link structure - Umuna lode, Misima Is., Papua New Guinea
3.22 Link structure - Golden Plateau, SE Queensland, Australia
3.23 Step over - El Indio district, Chile
3.24 Pull-apart basin ore environment - Kelian Au mine, Indonesia
3.25 Pull-apart basin ore environment - Ocampo, Mexico
3.26 Pull-apart basin ore environment – Way Linggo, Indonesia
3.27 Flexures, small scale exposures, Spain and Peru
3.28 Flexures - Viento vein, Chile
3.29 Flexures - Vera Nancy, Australia
3.30 Tension veins
3.31 Tension veins - Waihi, New Zealand
3.32 Tension veins and drill directions
3.33 Tension vein mineralisation and drill direction - Mt Kasi, Fiji
3.34 Tension veins and normal faults
3.35 Horsetail faults - El Indio, Chile
3.36 Splay faults – Chuquicamata
3.37 Link structure - La Escondida, Chile
3.38 Splay faults - Frieda-Nena, Papua New Guinea
3.39 Splay faults and Philippine Fault - Lepanto-Far South East & Tongonan geothermal field
3.40 Veins formed in response to compression - El Guanaco, Chile
3.41 Dilatant sites in conjugate fractures - Deseado Massif, Argentine Patagonia
3.42 Compressional oblique structures - restraining bends
3.43 Mineralised thrust faults - Gosowong, Indonesia
3.44 Mineralised thrust faults – Talang Santo
3.45 Orientation of ore shoots
3.46 Ore shoots - Palmarejo, Mexico
3.47 Flat dipping veins - Emperor gold mine
3.48 Flat dipping veins - Drake Volcanics, Eastern Australia
3.49 Styles of porphyry quartz-sulphide veins
3.50 Model for staged porphyry vein development
3.51 Porphyry veins and tectonic settings
3.52 Radial and concentric vein arrays
3.53 Intrusion emplacement and sheeted veins - Dinkidi, Philippines
3.54 Structural control - Browns Creek Au skarn.
3.55 Regional vein control - Goonumbla district, Australia
3.56 Sheeted quartz veins – Cadia East, Australia
3.57 Flat dipping veins – Ortiga, Rawbelle, Hinoba-an
3.58 Triggers for mineralisation - thrust erosion at Porgera-Mt Kare, Papua New Guinea
3.59 Transient changes from orthogonal to oblique compression
3.60 Deseado massif
3.61 Batu Hijau
3.62 Turkey
3.63 Mastra

4.1 Some colloquial breccia terms in common use in the exploration industry
4.2 Some colloquial breccia terms used by this author
4.3 Sub surface sedimentary structures
4.4 Summary genetic breccia classification
4.5 Contact breccia at intrusion margins
4.6 Contact or crumple breccias at dome margins - Wau and Peru.
4.7 Crumple breccias at dome margins - Las Calandrias, Argentina
4.8 Mineralised contact breccias - Twin Hills and Mt Wright, Australia.
4.9 Mineralised contact breccias - Mt Kasi, Fiji
4.10 Bimictic intrusion breccias
4.11 Model for breccia pipe development by explosive eruption collapse and mineralisation
4.12 Conceptual model for magmatic hydrothermal breccia pipes in sub volcanic terrains
4.13 Pebble dykes including those cutting the Panguna porphyry Cu, Papua New Guinea
4.14 Magmatic hydrothermal breccia, setting - San Cristobal, Chile
4.15 Magmatic hydrothermal breccia, rock types - San Cristobal, Chile
4.16 Geology of the Kidston breccia pipe, Queensland, Australia
4.17 Magmatic hydrothermal injection breccias, Kidston
4.18 Magmatic hydrothermal collapse breccias, Kidston
4.19 Mineralisation at the Kidston breccia pipe
4.20. Sulphide breccias including La Colorada pipe, Cananea
4.21 Magmatic hydrothermal breccias - Cargo, Australia
4.22 Decompression breccias.
4.23 Shingle breccias
4.24 Tourmaline breccia pipes
4.25 The Donoso breccia complex (pipe) Chile
4.26 Milled matrix breccias
4.27 Diatreme breccia model
4.28 Diatreme breccia pipe and endogenous domes - Wau, Papua New Guinea
4.29 Milled matrix breccia dykes
4.30 Juvenile intrusion clasts
4.31 Surficial and collapse features
4.32 Bedded phreatomagmatic breccias and tuff rings

Corbett Short Course Manual
4.33 Mineralisation within the matrix of phreatomagmatic breccias
4.34 Mineralisation at the margins of breccia pipes - Acupan, Philippines
4.35 Phreatomagmatic breccias - Kelian, Indonesia
4.36 Bulolo graben, Papua New Guinea
4.37 Mineralisation adjacent to diatreme breccia pipes - Kerimenge, Papua New Guinea
4.38 Milled matrix breccias - Nauti diatreme breccia pipe, Papua New Guinea
4.39 Cripple Creek diatreme breccia, USA
4.40 Milled matrix breccias - Gold Ridge, Solomon Islands
4.41 Breccias - Ladolam Au deposit, Lihir Is., Papua New Guinea
4.42 Diatreme breccia - Wafi Au deposit, Papua New Guinea
4.43 Diatreme-flow dome complex - San Cristobal, Bolivia
4.44 Phreatic or eruption breccia model
4.45 Eruption breccias – Upper Atiamuri, New Zealand and Beppu, Japan
4.46 Eruption pipes - Waimangu
4.47 Eruption breccia pipe - Champagne Pool, New Zealand
4.48 Eruption breccia pipes - Osorezan, Japan
4.49 Eruption breccia-sinter - McLaughlin mine, USA
4.50 McLaughlin mine mineralisation.
4.51 Eruption breccia-sinter-vein - Toka Tindung, Indonesia.
4.52 Eruption breccias - Twin Hills, Australia.
4.53 Eruption breccia-sinter - Puhipuhi, New Zealand.
4.54 Eruption breccias - Favona, New Zealand.
4.55 Clay matrix eruption breccias - Broken Hills New Zealand.
4.56 Clay matrix eruption breccias - Neavesville, New Zealand.
4.57 Hydrothermal injection breccias
4.58 Vein-breccias
4.59 Dissolution breccias
4.60 Composite breccia systems, White Island, New Zealand